金融工学

なぜリスクが高いとリターンの中央値が下がるのか?を定量的に説明する。

投稿日:

 




 

過去記事からの引用。

下のグラフは1年後のリターンの確率分布を示したもの。リスクを変化させていくと分布の計上がどう変わるかを示したものです。

グラフをみて分かる通り、リターンを一定にしてリスクを大きくしていくと確率分布の形状が低リターン側に盛り上がっていきます。

では中央値はどのように変化するかというと:

青色 (リターン7%・リスク20%):中央値は1.05倍

黄色 (リターン7%・リスク100%):中央値は0.65倍

オレンジ (リターン7%・リスク200%):中央値は0.15倍

つまり仮にリスクが200%というとんでもなく大きな値だとすると、50%の確率でリターンは0.15倍以下になります。

平均値は一定なのにも関わらず中央値は激下がり。中央値が激下がりするということは元本割れ確率が激上がりすると言い換えることが出来ます。

ではなぜこうなるのか?

 

Sponsored Link



 

株価が幾何ブラウン運動すると仮定するとリターンの中央値は1年後に以下のように表現できます。式の導出は過去記事を参照。

μは年率平均リターン、σはリスク。式は分かりやすくするために級数展開しています。

リスクとリターンは数%程度なので2乗の項は無視できるほど小さくなります。従って第二式のように近似できる。

この式を見て分かる通り、μ (リターン)が増えると中央値が増加するように作用し、σ (リスク)が増えると中央値が減少するように作用することが分かります。

これが、リスクが大きいと中央値が下がる定量的な説明です。

 

関連記事:

投資のリスクが大きくて何が問題なのか理解できません。リターンが大きければそれでいのでは?

【衝撃】レバレッジはリターンの中央値を下げる【金融工学】

 

 

Twitterでブログ記事の更新通知を受け取れます:

 

記事が役に立ったらクリックお願いします↓

にほんブログ村 株ブログ 米国株へ

-金融工学

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

なぜレバレッジをかけて高リターンを得るのは運ゲーなのかを幾何ブラウン運動で説明する。

    前回の記事「なぜリスクが大きいとトータルリターンが低下するのか?幾何ブラウン運動で定量的に説明する。」では、リスクがトータルリターンを下げる方向に寄与することを説明しました …

なぜS&P500 3倍レバレッジが暴落に弱いかを定量的に説明する。幾何ブラウン運動+ジャンプ過程。

  過去記事で紹介した、暴落を取り入れた幾何ブラウン運動のシミュレーションをS&P500の3倍レバレッジに適用してみます。 ちなみに私が知る限り、S&P500 3倍レバレッジ …

ポートフォリオ最適化。マートン問題を数式なしで解説する。

  前回の続きです。 「ライフサイクル投資術」の計算ステップを書き換えてみると、 (1) 下のグラフからRRA (相対的リスク回避度)を求め、 (2) リスク資産のリスク・リターンから最適レ …

「ライフサイクル投資術」の相対的リスク回避度グラフを効用関数を使って導出する。

  前回の記事からの続き。 「ライフサイクル投資術」では相対的リスク回避度 (RRA)を下のグラフから読み取れ、と書いています。 このグラフはどうやって作られたのか?「ライフサイクル投資術」 …

S&P500の最適レバレッジは1.75倍。SPDRとSPXLを10:6で混ぜれば作れる。

  前回の記事でS&P500の最適レバレッジは1.75倍だと説明しました。レバレッジを大きくすればするほどリターン分布の中央値が大きくなりますが、ある閾値を境に中央値は下がります。そ …

サラリーマンが全資産の95%をインデックスファンド(S&P500・オルカン)で運用中。2024年に億り人達成!ブログで様々な投資シミュレーションを紹介!

お問い合わせは:こちら

にほんブログ村 株ブログ 米国株へ