金融工学

【ポートフォリオ最適化】マートン問題を数式なしで解説する。

投稿日:




 

前回の続きです。

「ライフサイクル投資術」の計算ステップを書き換えてみると、

(1) 下のグラフからRRA (相対的リスク回避度)を求め、

(2) リスク資産のリスク・リターンから最適レバレッジを計算し、

(3) 最適レバレッジをRRAで割ればリスク資産の最適な比率を計算できる。

ちなみに、サミュエルソン割合=リターン / (リスクの2乗 x RRA)の式はマートンのポートフォリオ問題から導出されます。

 

無リスク資産 (現金・債券)とリスク資産 (株)を保有するとき、リスク資産の最適な割合はサミュエルソン割合、つまりリターン / (リスクの2乗 x RRA)で計算できる。

これは「マートンのポートフォリオ問題」から導出できます。

では、「マートンのポートフォリオ問題」とは何か?

 

Sponsored Link



マートンのポートフォリオ問題とは、「個人の期待生涯効用を最大にするように最適な消費と最適な資産の組み合わせを決定する」という問題です。

「期待生涯効用」が分かりにくいと思うので数式なしで説明すると:

効用:得た利益に対する個人の主観的な満足度

期待効用効用 (満足度)の期待値

期待生涯効用:各時点の消費の効用と保有資産の効用の和の期待値

ざっくりいえば、「毎年金を使って気持ちよく感じる度合いと、毎年口座に残ってる資産で気持ちよく感じる度合いの、それらの合計の期待値」です。

なぜ「期待値」なのか?それはリスク資産の価格が変動するためです。資産価格の変動は幾何ブラウン運動に従うと仮定します。

 

この問題は、工学の世界では確率的最適制御問題の一つと位置付けられています。

最適制御問題とは、時間変化する対象をどうやって最適に制御するか?という問題。一例として「月面に接近するロケットを最小限の燃費消費で着陸させるにはどのようにロケットを制御するか?」の月面着陸問題があります。

マートン問題の場合は、リスク資産価格がランダムに変動するために、古典的な最適制御問題に加えて確率的な要素が入ってくるのです。

この問題を解くのはかなり難しい。

イメージだけザックリ言えば、「各時点の消費」と「各時点のリスク資産の比率」を変数と考えて、ちょっとずつ変化させながら期待生涯効用を最大化する組み合わせを捜していきます。

 

この期待効用最大化問題からどうやってリターン / (リスクの2乗 x RRA)が求められるか?

それは次回の記事で紹介します。

 

参考:

不確実性の下での最適消費・資産選択問題    板垣有記輔

最適レバレッジと最適投資比率 (サミュエルソンの割合) との意外な関係。

【衝撃】レバレッジはリターンの中央値を下げる【金融工学】

【感動】ブラック・ショールズ・モデルを一番分かりやすく書いた本はこれだ ww

 

Twitterでブログ記事の更新通知を受け取れます:

 

記事が役に立ったらクリックお願いします↓

にほんブログ村 株ブログ 米国株へ

-金融工学

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

S&P500の積立投資と一括投資のリスクを確率分布の形状から定量的に比較する。

  前回の記事の続きです。 オレンジ:一括投資で20年間放置したリターンの分布 青色:20年間定額つみたて投資したリターンの分布 積み立てケース (青色)の分布の広がりは一括ケース (オレン …

S&P500長期投資で資産増加が加速するのが分かるグラフはこれだ ww

  インデックス投資に長期投資すれば「資産増加が加速する」とよく言われます。確かにそうなんですが、これは定量的に示すことが出来ます。 S&P500に720の法則を適用して指数の動きが …

投資で過去のリスクとリターンで分析することに批判があるが、そこは割り切るしかないと思う理由

  私は米国S&P500指数に連動するインデックスファンドに投資しています。その理由は過去の実績 (リスク: 20% リターン: 7%)が自分にとってリスク許容度内だし、高リターンだ …

便利なリスク・リターン・最適レバレッジ早見表を作ったぞ ww

  過去記事でS&P500の最適レバレッジは1.75倍と紹介しました。これはS&P500の720の法則を適用した場合のケースです。 中央値はL=1.75のときに最大値をとるこ …

米国S&P500の一括投資と積立投資を比較。積立投資でリスクを激減できる。

  私は米国株式指数S&P500に連動するインデックスファンドに投資しています。 前回の記事で紹介しましたが、株価の動きは「ある一定の方向に動く」と「ランダムに動く」の2つの効果を考 …

チャンドラです。

都内在住の30代サラリーマンです。このブログではインデックス投資の利点、運用成績、運用シミュレーションや金融工学の記事を公開していきます。

自己紹介は:こちら

お問い合わせは:こちら


にほんブログ村 株ブログ インデックス投資へ

にほんブログ村 株ブログ 米国株へ