金融工学

S&P500 2倍レバレッジは暴落に弱いか定量的に分析する。幾何ブラウン運動+ジャンプ過程。

投稿日:2022年1月22日 更新日:




 

過去記事で紹介した、暴落を取り入れた幾何ブラウン運動のシミュレーションをS&P500の2倍レバレッジに適用してみます。

2倍レバレッジは名著「ライフサイクル投資術」でも「レバレッジかけるならマックスでも2倍程度が限度」と言及されるほど、「いい塩梅」のレバレッジ比率です。

ちなみに私が知る限り、S&P500 レバレッジに対してポアソン分布を用いたジャンプ効果を取り入れたシミュレーションを行った書籍は存在しないので、これはナカナカ面白い検証になると思います。ちなみにレバなし、3倍レバレッジの結果は以下の記事を参照。

【予想外】暴落を取り入れたS&P500投資シミュレーションの結果。幾何ブラウン運動+ジャンプ過程。

なぜS&P500 3倍レバレッジが暴落に弱いかを定量的に説明する。幾何ブラウン運動+ジャンプ過程。

モデルは前回と同じですがおさらいします。

基本的な株価変動モデルである幾何ブラウン運動に加えて、暴落がポアソン分布に従うと仮定したジャンプ過程を考慮したシミュレーションを行います。このモデルに暴落の効果を取り入れた式は下のようになります。

以下は前提条件です。

年率平均リターン (μ):14% (S&P500を7%と想定。その2倍)

リスク (σ):40% (S&P500を20%と想定。その2倍)

期待暴落回数 (λ):0.1 (10年に1回暴落)

暴落の大きさ (ν):50%

暴落の大きさの標準偏差 (ξ): 5%

投資期間: 20年間

計算は20万回行いました。

如何結果です。S&P500 x2 (暴落あり)をS&P500 (暴落あり)と比較するとどうなるか?

元本割れ割れ確率:

S&P500 (暴落あり):18%

S&P500 x2 (暴落あり):25%

 

リターンが2倍以上になる確率:

S&P500 (暴落あり):64%

S&P500 x2 (暴落あり):62%

 

リターンが3倍以上になる確率:

S&P500 (暴落あり):50%

S&P500 x2 (暴落あり):54%

 

リターンが4倍以上になる確率:

S&P500 (暴落あり):40%

S&P500 x2 (暴落あり):48%

S&P500 2倍レバレッジ (暴落あり)とレバなし(暴落あり)を比べると、2倍レバレッジの元本割れ確率の高さが目立ちますが、その差は7%程度です。まあ、それほど大きくはないかなって感じですかね。ただしリターン4倍以上になる確率は2倍レバの方が高くなります。

つまり何が分かるかというと、

(1) 2倍レバだと元本割れ確率は7%程度高いが、

(2) リターン4倍以上の確率はレバなしより高い。

ここまで見て私の感想は;

元本割れ確率もそれほど高くないし2倍レバレッジは悪くないな~です。

これまで、暴落シミュレーションはレバなし、レバ2倍、レバ3倍で検証したので、結果を別記事でまとめたいと思います。

関連記事:

【予想外】暴落を取り入れたS&P500投資シミュレーションの結果。幾何ブラウン運動+ジャンプ過程。

なぜS&P500 3倍レバレッジが暴落に弱いかを定量的に説明する。幾何ブラウン運動+ジャンプ過程。

記事が役に立ったらクリックお願いします↓

にほんブログ村 株ブログ 米国株へ

-金融工学

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

【SPXL】S&P500に3倍レバレッジをかけて中央値が下がることが問題なのか?の定量的な説明

  読者様からレバレッジに関する過去記事について質問を頂きました。 記事の内容を要約すると、「S&P500の最適レバレッジは1.75倍。それを越えるレバレッジをかけるとリターンの中央 …

S&P500の2倍レバレッジを長期保有するとどうなるか?30年間投資するならレバレッジかけなくてもいい理由。

  過去記事でS&P500のレバレッジなし、2倍レバレッジ、3倍レバレッジを定量的に比較しました。 株価のリスク・リターンが20%・7%の幾何ブラウン運動すると仮定して計算。見えてき …

S&P500に投資したときの元本割れ確率を可視化してみた。

  前回の続き。 資産推移のグラフは単線で引いた平均値の推移をみるよりも、資産の広がりを加えた方がより現実的だと紹介しました。 下のグラフはS&P500指数がリスク20%・リターン7 …

30年後に2000万円欲しいときに積み立てるべき金額

  老後2000万円問題が以前話題になりました。退職時に2000万円ないと老後破綻するという内容です。 2000万円という数字が独り歩きした感は否めないです。当たり前ですが必要な金額は、年金 …

暴落はいつでも起きうる。「売りが売りを呼ぶ」プロセスは2つ。

  金融工学ではリスクとリターンが分かれば将来のトータルリターンの分布や元本割れ確率などを計算することができます。だから金融工学で使用する株価変動モデルは将来の株価を予想するうえで「実務的に …

チャンドラです。

都内在住の30代サラリーマンです。このブログではインデックス投資の利点、運用成績、運用シミュレーションや金融工学の記事を公開していきます。

自己紹介は:こちら

お問い合わせは:こちら


にほんブログ村 株ブログ インデックス投資へ

にほんブログ村 株ブログ 米国株へ