金融工学

レバレッジETFの減価問題はなぜ嘘くさいのかを定量的に説明する。

投稿日:2021年10月17日 更新日:




 

レバレッジETFは減価リスクがあるから危険と言われることがあります。

超簡単な例でいうと、株式指数が10%上昇し翌日10%下落した場合:

レバなし:1.1 x0.9= 0.99

3倍レバレッジ:1.3 x0.7=0.91

つまりレバなしであれば合計1%の下落で済むにも関わらず、3倍レバレッジであれば合計9%も下落する。

このような上昇と下落をどんどん繰り返せば、レバレッジ3倍ETFはどんどん下落していくので危ないと。

金融庁のレバレッジETF注意喚起にも似たようなことが書いてあります。

中長期の期間をとった場合、一般的に株価は①や②のように上下動を繰り返すことが多く、③や④のように一方向に上昇又は下落が続くケースは少ないと考えられます。

 

Sponsored Link



 

確かに株価が上下動を繰り返せば、レバなしよりも3倍レバの方が下落が大きくなる「減価リスク」が顕在化します。これは間違っていません。

問題は、上下動を繰り返す相場が本当に起きやすいのか?という点です。

上下動相場というのは、様々なパターンのうちの一つのシナリオに過ぎません。減価リスクが語られるとき、そのシナリオの発生確率が完全に見過ごされていると思います。

定量的に考えてみます。例えばS&P500のリスク・リターンは20%・7%です。(年率で考えてます。)

株価変動を幾何ブラウン運動でモデル化すると、上昇する確率は66%、下落する確率は34%です。

つまり、そもそも指数(S&P500)は上昇確率が下落確率より高いにも関わらず、より発生しにくいシナリオである上下動相場を持ってきて、減価リスク云々語るのはなんだか変だということ。

ざっくり言えば、上昇確率 > 下落確率なのだから上昇を続ける相場の方が発生しやすいので、その場合はレバレッジありの方が断然有利になります。

Sponsored Link



 

結局何が言いたいかというと、

レバレッジETFの減価リスクの話は、特定の相場を切り抜いて語られているだけで、そもそもの指数の特性「上昇確率 > 下落確率」が置き去りにされてるってことです。

一方で、レバレッジETFの挙動を確率分布で分析すれば、そのようなシナリオ切り抜きの弊害はなくなります。

なぜなら、確率分布をつかえば全てのシナリオを包括してトータルリターンや元本割れ確率を計算することができるからです。(※)

確率分布を用いた分析例は、たとえばコレ。

S&P500にレバレッジ3倍かけると元本割れ確率の減少が鈍い。【SPXL】【レバレッジETF】

※ただし暴落の効果を取り入れるには少し数学的テクニックが必要です。以下記事を参照。

【予想外】暴落を取り入れたS&P500投資シミュレーションの結果。幾何ブラウン運動+ジャンプ過程。

記事が役に立ったらクリックお願いします↓

にほんブログ村 株ブログ 米国株へ

-金融工学

執筆者:


  1. アバター より:

    勉強になりますた。ありがとうございます。

comment

メールアドレスが公開されることはありません。

関連記事

なぜリスクが大きいとトータルリターンが低下するのか?幾何ブラウン運動で定量的に説明する。

    株価の変動は幾何ブラウン運動でモデルできることがよく知られています。 幾何ブラウン運動はこのブログの記事で何回も出てきてますが、あえて基礎に立ち返ってみます。すると株価変動 …

現金:S&P500の最適比率が分かる早見表 (マートン問題と相対的リスク回避度で計算)

  過去記事でS&P500に投資した際の最適比率を計算する方法を、マートンのポートフォリオ問題を用いて説明しました。 マートン・社畜の式: S&P500の最適比率 = 1.7 …

「72の法則」をリスク資産に適用するのは正しいのか?リターンの確率分布の観点から検証。

  資産運用するときに「72の法則」は元本を2倍にするための投資期間を計算できる法則です。以下は野村証券のサイトから引用。 金融商品に投資する際に、金利の複利効果により元本を2倍にする場合の …

S&P500長期投資で資産増加が加速するのが分かるグラフはこれだ ww

  インデックス投資に長期投資すれば「資産増加が加速する」とよく言われます。確かにそうなんですが、これは定量的に示すことが出来ます。 S&P500に720の法則を適用して指数の動きが …

パレート図で見るS&P500で爆益得る確率。リターン4倍の確率は50%近くもある。

    過去記事でS&P500の過去リターンのパレート図を作成しました。 パレート図からリターンがある値を超えた割合を簡単に計算することができます。度数を数えるだけなので。 …

チャンドラです。

都内在住の30代サラリーマンです。このブログではインデックス投資の利点、運用成績、運用シミュレーションや金融工学の記事を公開していきます。

自己紹介は:こちら

お問い合わせは:こちら


にほんブログ村 株ブログ インデックス投資へ

にほんブログ村 株ブログ 米国株へ