金融工学

なぜレバレッジをかけて高リターンを得るのは運ゲーなのかを幾何ブラウン運動で説明する。

投稿日:2021年8月13日 更新日:

 




 

前回の記事「なぜリスクが大きいとトータルリターンが低下するのか?幾何ブラウン運動で定量的に説明する」では、リスクがトータルリターンを下げる方向に寄与することを説明しました。

次はレバレッジのトータルリターンへの寄与をを見ていきます。

レバレッジを過度にかけるとリターンの中央値が低下することは過去記事で定量的に検証済みです。その理由は「高リターンを得る確率が低いから」なのですが、「なぜそうなるのか?」を基礎に立ち返って掘り下げます。

株価が幾何ブラウン運動に従うとき、下の確率微分方程式で記述できます。

レバレッジなしの式との対応関係から、リターン(μ)とリスク(σ)がL倍になっていることが分かります。上の確率微分方程式を解いたのが以下の式。

左辺について。Stは時刻tの株価でS0は時刻0の株価。従って左辺は、時刻tのリターンの対数だとわかります。

次に右辺を見ていきます。右辺の括弧をばらして書き直します。

(1) 第一項は(レバレッジ)x(リターン)x(時間)

プラスの項です。従って、リターンが大きいほど、そして投資期間が長いほど、右辺は大きくなります。

(2) 第二項は0.5x (レバレッジの2乗)x(リスクの2乗)x(時間)

マイナスの項です。従って、リスクが大きいほど、そして投資期間が長い程、右辺は小さくなります。

(3) 第三項はウィーナー過程にリスクとレバレッジを乗じたもの。

ウィーナー過程は平均0・分散tの正規分布に従います。つまりこの項はランダムな値をとりますが、その値の取り方は標準正規分布に従います。例えばt=1だと68%の確率で、-Lσ~+Lσの間の値をとることになります。まとめると右辺は大きくもなるし小さくもなる。

 

この部分の考え方は過去記事のレバなしのケースで書きました。(2)はマイナスの項であるがゆえにリスクが大きければ大きいほど、リターンを引き下げる傾向にあるということ。例え(3)のランダム項がプラスになったとしても、(2)の引き下げ効果によってリターンは低下しやすくなる。

ただレバなしケースとの違いは、(2)にレバレッジの2乗が含まれているという点です。レバレッジは1より大きいため、レバレッジを2乗したら必ず増加します。

つまりレバレッジを大きくするほど、(2)のマイナス効果は2乗で増幅されます。

確かに(3)にもLが含まれているので、ランダムに高いリターンが得られる可能性はあります。ただし、(2)のマイナス効果がLの2乗であることを考えると、(2)の効果が勝りやすくなると思います。

 

ここで数値のオーダー(大きさの程度)を見てみます。

例えばS&P500 (リスク20%・リターン7%)、投資期間は20年、レバレッジ3倍とします。

(1)第1項:3 x0.07 x20=4.2

(2)第2項:0.5 x3 x3 x0.2 x0.2 x20=3.6

(3)第3項:34%の確率で0~+2.7、34%の確率で-2.7~0 (*)

(*)(3)の値は(平均0・分散tの正規分布)xLσに従うので68%の確率で-2.7~+2.7の間の値をとります。

リスクが関係する項の(2)と(3)だけに着目すると、その項の合計は、

34%の確率で-3.6~-0.9、34%の確率で-6.3~-3.6。つまり(2)+(3)はマイナスになってしまいました。(言い換えると、この項は少なくとも68%の確率でマイナスになる。)

ただしリターンは(1)~(3)の総合なので全部足すと、右辺の和は68%の確率で-2.1~+3.3。

せっかくレバレッジをかけて(1)で大きなリターンを得たのに、(2)の影響がかなり大きいためリターンが大きく引き下げられていることが分かります。(1)+(2)で+0.6しかないです。リターンをさらに上げるにはランダム項の(3)がプラスになる必要がありますが、これは運ゲー要素が高いです。

まとめると、

(1)によって高リターンを得る確率は高まるが、

(2)は大きなリターン引き下げ効果を発揮する。

最終的に高リターンをたたき出すには(3)がプラスになる必要があるが、これは運ゲー。

ここまで見れば、レバレッジかければ「確実に高リターンを得られる」がウソだとはっきり分かるでしょう。

ちなみに、諸悪の根源である(2)のマイナス効果を打ち消す方法があります。それが最適レバレッジ比率です。それは次の記事で説明します。

 

関連記事:

なぜリスクが大きいとトータルリターンが低下するのか?幾何ブラウン運動で定量的に説明する。

【衝撃】レバレッジはリターンの中央値を下げる。3倍レバレッジが危険な理由を定量的に説明。

【SPXL】S&P500に3倍レバレッジをかけて中央値が下がることが問題なのか?の定量的な説明

 

Twitterでブログ記事の更新通知を受け取れます:

 

記事が役に立ったらクリックお願いします↓

にほんブログ村 株ブログ 米国株へ

-金融工学

執筆者:


comment

メールアドレスが公開されることはありません。

関連記事

実は曖昧な「リスク許容度」。リスク許容度って一体何なんだ?

    前回の記事では、リスクが大きいとリターンが高くなるチャンスも増えるが、同時に元本割れする確率も増えることを確率分布で説明しました。 (1)リターン7%・リスク20%:元本割 …

WealthNaviのアルゴリズムを読むべし。現代ポートフォリオ理論に基づいてキッチリ分散。

  資産運用をやってる人の中にはWealthNaviを利用している人も多いと思います。 WealthNaviは利用者のリスク許容度をもとに国際分散投資を自動でやってくれるサービスです。今現在 …

リターン中央値を最大化する最適レバレッジ比率の効果を幾何ブラウン運動で説明する。

    前回の記事「なぜレバレッジをかけて高リターンを得るのは運ゲーなのかを幾何ブラウン運動で説明する。」では、レバレッジについて以下のように説明しました。 (1) 株価が幾何ブラ …

僕はかけましぇん。S&P500にレバレッジはかけましぇんから!怖いから!リターン減るから ww

  株価がウナギ登りの状況を見るとレバレッジをかけたくなります。 でもね、僕はレバレッジをかけましぇ~ん ww レバレッジは、怖いですから!3倍とか高すぎですから!あなたが破滅してほしくない …

S&P500リターンの確率分布から分かるリターン5倍以上の確率。

  前記事からの続きです。 S&P500指数がリスク20%・リターン7%の幾何ブラウン運動に従うと仮定、その際のリターンの確率分布は下の通りです。 確率分布の形は分かったと。ではリターンが2 …

チャンドラです。

都内在住の30代サラリーマンです。このブログではインデックス投資の利点、運用成績、運用シミュレーションや金融工学の記事を公開していきます。

自己紹介は:こちら

お問い合わせは:こちら


にほんブログ村 株ブログ インデックス投資へ

にほんブログ村 株ブログ 米国株へ